
Managing the Performance of Large,
Distributed Storage Systems

Scott A. Brandt
and

Carlos Maltzahn, Kleoni Iouannidou, Anna Povzner,
Roberto Pineiro, Andrew Shewmaker, and Tim Kaldewey

University of California Santa Cruz
and

Richard Golding and Ted Wong, IBM Almaden Research Center
and

Darren Sawyer, NetApp

HEC FSIO 2011

What types of QoS guarantees are useful to
HEC application scientists (esp. at exascale)?

• Isolation / virtualization of storage performance

• Guaranteed
• Checkpoint performance

• Data capture

• Performance under varying workloads

• Performance under concurrent workloads

• Performance under failure

• Performance for viz

• What guarantees: throughput & latency

What is the relationship between QoS
infrastructure and other job scheduling
infrastructure (e.g., batch schedulers, MapReduce
scheduling)?

• Very close relationship

• QoS requirements must inform all system
schedulers

• Only possible if
• Each resource is well understood

• Requirements are well understood

• Simplifying principles are found and used

Is the ratio of funded to productized work in QoS
lower than in other areas? Yes. If so, why?

• New area—focus has traditionally been on
performance, performance, and performance

• Hard and requires new ways of thinking

• Crosscutting: storage, real-time, distributed
systems, networking, scheduling, ...

• Enabled by excess processor capacity

• Needed by cloud computing and virtualization

• Starting to make it into commercial products

• More on the horizon...

Challenges

• Legacy (intransigent) applications and users

• Scaling—aggregate management

• Crossing the threshold to usability

• Varied resources, applications, workloads

• Interference between I/O streams

• System management tasks

Distributed systems need performance
guarantees

• Many systems and applications want I/O performance
guarantees
• Multimedia, high-performance simulation, transaction processing,

virtual machines, cloud services, service level agreements, real-
time data capture, sensor networks, ... system tasks like backup
and recovery ... even so-called best-effort applications

• Providing guarantees is difficult
• Interacting resources, dynamic workloads, interference among

workloads, non-commensurable metrics

• Needs
1. Guaranteed performance

2. Isolation between workloads

3. High performance

In a nutshell

• Big distributed systems
• Serve many users/jobs

• Process petabytes of
data

• Data center design
• Use rules of thumb

• Over-provision

• Isolate

• Ad hoc per formance management
approaches creates expensive and marginal
solutions

• A better system guarantees each user the
performance they need from the CPUs,
memory, disks, and network

client

cache

network

transport

disk
storage

cache

network

transport

flow
control
with one
client

connection
management
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on
utilization, QoS

app

app

I/O

scheduler

client

cache

network

transport

app

app

integration
between
client and
server cache

Our approach

1. Disk I/O

2. Server cache

3. Flow control across
network

4. Client cache

1. A uniform model for
performance management

2. Apply it to each resource

3. Integrate the solutions

Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads

• All resources: CPU, disk, network, server cache, client
cache

➡Virtual resources indistinguishable from “real”
resources with fractional performance

Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth

should be indistinguishable from a disk with 20
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random

Scott’s epistemology of virtualization

• Virtual Machines and LUNs provide good HW
virtualization

• Question: Given perfect HW virtualization, how
can a process tell the difference between a virtual
resource and a real resource?

• Answer: By not getting its share of the
resource when it needs it

Observation

• Resource management consists of two
distinct decisions
• Resource Allocation: How much resources to

allocate?
• Dispatching: When to provide the allocated

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time

The resource allocation/dispatching
(RAD) scheduling model

Rate

Deadlines

Dispatcher
Series of
jobs w/

budgets and
deadlines

Share of
resources

Times at
which allocation
must equal share

Process

Adapting RAD to disk, network, and buffer cache

• Fahrrad—Guaranteed disk request
scheduling
Anna Povzner

• RADoN—Guaranteeing storage
network performance
Andrew Shewmaker

• Radium—Buffer management for I/O
guarantees
Roberto Pineiro

• Horizon—I/O management for
distributed storage systems
Anna Povzner

Disk

Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of
magnitude

Fahrrad

• Manages disk time instead
of disk throughput

• Adapts RAD/RBED to
disk I/O

• Reorders aggressively to
provide good
performance, without
violating guarantees

A B C BE

Disk

I/O streams

Fahrrad

Anna Povzner, Tim Kaldewey, Scott A. Brandt, Richard Golding, Theodore Wong, and Carlos
Maltzahn, ”Efficient Guaranteed Disk Request Scheduling with Fahrrad”, Eurosys 2008.

Fahrrad outperforms Ext2/3

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad

Fahrrad virtual disks

• Provide workload-independent performance
guarantees

• Isolate from other workloads concurrently
accessing the device

• LUNs virtualize
storage capacity

• Fahrrad virtualizes
storage performance

Fahrrad virtual disks

• Implemented with the Fahrrad real-time I/O
scheduler

• Guarantee reserved and isolated share of the
time on storage device
• Hard guarantees on performance isolation

• Virtual disk throughput same as equivalent
standalone throughput

• Amount of data transferred:
• ∀i, Di(x%, t) = Di(100%, x%·t)

Share of
disk

Time Share of
disk

Time

Ensuring isolation

• Virtual disk reservation: disk share (utilization)
and time granularity (period)
• Account for all extra (inter-stream) seeks

• Reserve overhead utilization to do them

• Charge each I/O stream for all of the time it uses,
including inter- and intra-stream seeks

• Reservation = Disk Share + Overhead utilization

25%, 1 sec

30%, 250 ms

19%, 1 min

Disk time

• Throughput is fully determined by reservation & workload

• Virtual disk are completely isolated from each other

Each virtual disk
reserves 20%
with 1 second

granularity

 0

 100

 200

 300

 400

 500

 0.01 0.1 1 10 100 1000

A
m

o
u

n
t

o
f

d
a

ta
 t

ra
n

sf
e

re
d

 [
M

B
]

Run length of semi-sequential stream [MB]

Sequential, virtual disk (20% share, 150s)
Semi-sequential, virtual disk (20% share, 150s)

Random, virtual disk (20% share, 150s)
Sequential, standalone (100%, 30s)

Semi-sequential, standalone (100%, 30s)
Random, standalone (100%, 30s)

Guaranteeing throughput

Guaranteeing latency

• Latency is bounded by deadlines

Upper bounds

Fr
ac

tio
n

of
 I/

O
s

Latency

U
til

iz
at

io
n

Fahrrad virtual disks work

• Fahrrad Virtual Disks provide Cello99 and OpenMail performance
very close to standalone

• Cello99 and OpenMail virtual disks share the system with random background stream.
•

Time

Fahrrad Virtual Disks

T
hr

ou
gh

pu
t

(I/
O

s
pe

r
se

co
nd

)

Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch
queue overflows)

• Non-preemptable

• Assumption: closed network

What we want

Client

Client

Client

Server

Server

Server

30%

50%

20%

What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention

Congestion in a simple switch model

• Each transmit port
on the switch is a
collision domain

tx/rx
ports

shared

FIFO

switch fabric

1

2

3

4

5

6

7

8

Congestion in a simple switch model

• One of the packets
arriving at the
same switch
transmit port is
delayed on the
queue

switch fabric

1 and 2
congest1

2

3

4

5

6

7

8

1 and 2
send to 5

Congestion in a simple switch model

• Delayed packets
from unrelated
streams affect each
other on the
queue

switch fabric

1 and 2
congest1

2

3

4
3 and 4
congest

2 and 4
congest

5

6

7

8

1 and 2
send to 5

3 and 4
send to 8

RADoN

• Each reservation has a network share (utilization)
and a time granularity (period)

now deadline
laxity

release
Tim Kaldewey, Andrew Shewmaker, Carlos Maltzahn, Theodore Wong, and Scott Brandt,
”RADoN: QoS in Storage Networks”, WIP Session of FAST 2008.

• Flow control: throttle senders

• Execution time (per period) e =
utilization / period

• Budget in packets m = e /
packets_per_second

• Congestion control: avoid switch
contention by adjusting wait time
between packets

• Percent budget %budget = (1 -
%laxity) = e/(d-t)

• Packet wait time w = wmin / %budget

• Size change w∆ = -|wi - wmin|/2

• New wait time wi+1 = min(wmax,
max(wmin, w∆))

Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Disk

Buffering roles in storage servers

• Decoupling
• Allows sender and receiver to operate

asynchronously

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of

interfacing devices

Disk

Radium

• I/O into and out of buffer have
rates and time granularities
(periods)

• Partition buffer space based on I/
O characteristics and
performance requirements

• Cache policies enhance
performance within constraints
determined by I/O requirements
• Use slack to prefetch reads and

delay writes

Disk

App 1

Disk Scheduler

Buffer-Cache

Disk

App 2 App 3

Roberto Pineiro, Kleoni Iouannidou, Carlos Maltzahn, and Scott Brandt, “RAD-FLOWS:
Buffering for Predictable Communication,” RTAS 2011

Managing combined workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RADTh

ro
ug

hp
ut

 [t
ho

us
an

d
I/O

 p
er

 s
ec

] no cache

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Monolithic

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

 0

 1

 2

 3

 4

 5

fifonoop
deadline

anticipatory

cfqquanta
RAD

Radium

target performance

Combined throughput of rand.(top) and seq.(bottom) workloads

Disk

Horizon

• Big storage systems are shared, have many disks, and
application workloads compete and interfere

• Real distributed systems have
• Different data layouts

• Multiple data entry points

• Different data paths

• Horizon goals
• Meet performance targets

• Fully utilize system resources

• Not rely on reservations

• Decentralized solution

Anna Povzner, Darren Sawyer, Scott A. Brandt, ”Horizon: Efficient Deadline-Driven Disk I/O
Management for Distributed Storage Systems,” HPDC 2010. Best Paper

Multi-layered approach

• Workloads specify
performance targets
• Throughput and latency

• Upper layer control
mechanism
• Throughput limiting

• Deadline assignment based
on throughput and latency
targets

• Low-level disk schedulers
• Meet individual request

deadlines

Throughput limiting

Deadline assignment

Disk schedulers

Deadline: time that
a request must

complete in order to
meet its

performance target

I/Os tagged
w/deadlines

Horizon disk scheduling

• Manage I/O in terms of
disk time

• Estimate service times
based on service time
measurements

• Reorder requests
within “slack time”
before earliest
deadline

• Adjust based on
optimizations,
overload, latency

Horizon disk scheduling

• Horizon set to earliest deadline

• Reordering set = everything that
will fit before horizon

• Execution times measured as
requests complete

• Optimizations
• Squeeze in more sequential I/Os

• Use optimistic estimates

• Increase reordering set (esp. under
overload)

• Increase device queue
• Larger = better performance

• Smaller = tighter deadlines

Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks

Horizon in use
• Implemented in NetApp’s Data ONTAP (data from FAS3040)

• Performance targets associated with volumes
• Control mechanism at FS entry point

• Schedulers between RAID and disks

Thoughput
targets met

> 92% of latency
targets met

Conclusion

• I/O performance management is needed,
challenging, and feasible
• Many separate elements are involved
• A unified approach is ideal

• RAD is the basis for a unified solution
• CPU, disk, network, buffer cache, system

• It is in use in a commercial storage system

• More in the works

